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Let f # B2
_ , i.e., f # L2(R) and its Fourier transform F(s)=�R f (t) e&2?ist dt

vanishes outside of [&_, _], then the Shannon sampling theorem says that f can
be reconstructed by its infinitely many sampling points at [k�(2_)], k # Z, i.e.,

f (t)= :

�

k=&�

f \ k
2_+ sin ?(2_t&k)

?(2_t&k)
, \t # R.

But, in practice, only finitely many samples are available, so one would like to
study the truncation error

TN(t)= f (t)& :

N

k=&N

f \ k
2_+ sinc(2_t&k), \f # B2

_ .

The error bounds commonly seen in literature are not uniform. In this paper, the
author gives uniform bounds for the truncation error for f # B2

_ , when its Fourier
transform satisfies some smooth conditions. � 1998 Academic Press

1. INTRODUCTION

The functions f (x) # L2(R) whose Fourier transforms defined by

F(s)=|
R

f (t) e&2?ist dt

vanish outside of finite interval [&_, _] are called bandlimited. The _ is
the bandwidth. It is well known that the functions can be represented by
the so called Shannon's expansion

f (t)= :
�

k=&�

f \ k
2_+ sinc(2_t&k), (1.1)
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where

sinc(t) :=|
1�2

&1�2
e2?ist ds={1

(sin ?t)�?t
if t=0
if t{0

. (1.2)

An important underlying engineering principle here is that all the informa-
tion contained in such a bandlimited signal can be recovered from its equi-
distant samples. The sampling rate 2_ is known as the Nyquist rate.

Shannon's expansion requires us to know the exact values of f at
infinitely many points and to sum an infinite series. In practice, only finitely
many samples are available so we would like to develop bounds on the size
of the truncation error

TN(t) :=f (t)& :
N

k=&N

f \ k
2_+ sinc(2_t&k) (1.3)

associated with (1.1). The error bounds commonly seen in the literature,
e.g., [1, 3, 6, 8, 9, 12, 13], are not uniform. In this paper we will establish
uniform bounds for TN(t) as given in (1.3).

The sinc(t) function (1.2) that appears in (1.1), (1.3) oscillates and
decays like 1�t at \�. Our error estimates make use of a number of spe-
cialized bounds for sums of samples of sinc functions as well as other func-
tions having similar properties. For organizational purposes we present all
of these technical results in Section 2.

In Section 3, we describe previously published bounds on TN(t) and then
show that

|TN(t)|�
C1

Nr+1�2

|TN(t)|�
C2 ln N
Nt+1

when

| f (t)|�
A

|t| r+1 , t{0.

Here C1 and C2 are constants that depend on f and the parameters r>0,
A>0. We also show that

|TN(t)|�\1+
?
2+ {} f \&N

2_ +}+ } f \N
2_+}=
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in the case where f is monotone on (&�, &N] and [N, �). Using this
bound we estimate the error that results when we approximate some
f # L1(R) by the sinc polynomial

:
N

k=&N

f \ k
2_+ sinc(2_t&k).

2. BOUNDS FOR SERIES OF SINC FUNCTIONS

In this section we establish bounds for various series of sinc functions.
The proofs are technical. To simplify notation we set 2_=1 and work with
sinc(t&k), k=0, \1, \2, } } } .

Lemma 2.1. For �<t<�,

:
�

k=&�

sinc(t&k)=1, (2.1)

:
�

k=&�

sinc2(t&k)=1. (2.2)

Proof. Let t # R be fixed. The Fourier series of e2?ist as a function of s
on [&1

2 , 1
2] is given by

e2?ist= :
�

k=&�

ck e2?isk, (2.3)

where

ck=|
1�2

&1�2
e2?iste&2?isk ds

=|
1�2

&1�2
e2?is(t&k) ds

=sinc(t&k).

We obtain (2.1) by setting s=0 in (2.3). We obtain (2.2) from (2.3) by
using Parseval's identity. K

Lemma 2.2. Let N>M be integers and let &�<t<�. Then

} :
N

k=M

sinc(t&k) }�?
2

+1.
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Proof.

:
N

k=M

sinc(t&k)= :
N

k=M
|

1�2

&1�2
e?is(t&k) ds

=|
1�2

&1�2
:
N

k=M

e&2?isk } e2?ist ds

=|
1�2

&1�2

e&2?isM&e&2?is(N+1)

1&e&2?is } e2?ist ds

=|
1�2

&1�2

e?is(2t&2M+1)&e?is(2t&2N&1)

e?is&e&?is ds

=|
1�2

&1�2

sin ?s(2t&2M+1)+sin ?s(&2t+2N+1)
2sin ?s

ds

=I(:)+I(;),

where :=2t&2M+1, ;=&2t+2N+1, and

I(:) :=
1
2 |

1�2

&1�2

sin(:?s)
sin(?s)

ds=|
1�2

0

sin(:?s)
sin(?s)

ds

with a similar expression for I(;).
Using the inequality

2
?

t�sin t�t when 0�t�
?
2

,

we see that then 0�:�1, we have

I(:)�|
1�2

0

sin :?s
sin ?s

ds�|
1�2

0

:?s
2s

ds�
?
4

.

When :>1, we compute

I(:)=|
1�2

0

sin(:?s)
sin(?s)

ds=I1(:)+I2(:),

where

I1(:) :=|
1�2:

0

sin(:?s)
sin(?s)

ds�|
1�2:

0

:?s
2s

ds=
:?
2

}
1

2:
=

?
4
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is necessarily nonnegative, and

I2(:) :=|
1�2

1�2:

sin(:?s)
sin(?s)

ds.

To bound I2(:) we first write

I2(:)=|
1�2

1�2:

1
sin(?s)

d \&
cos :?s

:? +
=

1
sin(?s) \&

cos :?s
:? +}

1�2

1�2:

&|
1�2

1�2:

cos(:?s)
:?

}
?cos ?s
(sin ?s)2 ds

=&
cos :?(1�2)

:?
&|

1�2

1�2:

cos(:?s)
:

}
cos ?s

(sin ?s)2 ds

and thereby find

|I2(:)|�
1

:?
+|

1�2

1�2:

1
:

}
1

(sin ?s)2 ds

�
1

:?
+|

1�2

1�2:

1
:

}
1

(2s)2 ds

=
1

:?
+

1
4:

} (2:&2)

=
1

:?
+

1
2

&
1

2:
�

1
2

.

Upon combining these results we see that

|I(:)|=|I( |:| )|�{(?�4)
(?�4)+(1�2)

when |:|�1
when |:|�1.

It follows that

} :
N

k=M

sinc(t&k) }�|I(:)|+|I(;)|�
?
2

+1. K

Note. When t{\1, \2, } } } the sums

:
N

k=M

|sinc(t&k)|=|sin ?t| :
N

k=M

1
?|t&k|

are not bounded.
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Lemma 2.3. If r>1, then

1
r&1

}
1

(N+1)r&1� :
�

k=N+1

1
kr�

1
r&1

}
1

Nr&1. (2.4)

Lemma 2.4. For &�<t<�

:
�

k=&�

|sinc(t&k)| q�{1
2+(2�?)+(2�?) } (1�q&1)

if q�2
if 1<q<2

. (2.5)

Proof. When q�2 we use (2.2) and write

:
�

k=&�

|sinc(t&k)| q� :
�

k=&�

|sinc(t&k)| 2=1.

When 1<q<2 we use the periodicity of the sum and (2.4) to write

:
�

k=&�

|sinc(t&k)| q

� sup
0�t�1

:
�

k=&�

|sinc(t&k)|q

� sup
0�t�1 \ |sinc(t)|q+|sinc(t&1)| q+ :

k{0, 1

|sin ?(t&k)|q

?q|t&k|q +
�2+ sup

0�t�1

:
k{0, 1

1
?q|t&k|q

�2+
1
?

sup
0�t�1 \ :

�

k=2

1
(k&t)q+ :

&1

k=&�

1
(t&k)q+

�2+
1
? \2+2 :

�

k=2

1
kq+

�2+
2
?

+
2
?

}
1

q&1
. K

The following result can be used to provide us with examples of
bandlimited functions.
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Theorem 2.5 (C. Eoff. [7]). Let ..., c&2 , c&1, c0 , c1 , c2 , ... be a sequence
of complex constants and let _>0. If ��

k=&� |ck | 2<�, then the series

:
�

k=&�

ck sinc(2_t&k)

converges uniformly and absolutely on R to a function in B2
_ .

3. UNIFORM BOUNDS FOR THE TRUNCATION ERROR

We develop various uniform bounds on the symmetric truncation error

TN(t) :=f (t)& :
N

k=&N

f \ k
2_+ sinc(2_t&k).

The error bounds commonly seen in the literature ( e.g., [1, 3, 6, 8, 9,
12, 13]) are not uniform. Three such results are given below.

Theorem 3.1. (K. Yao and J. B. Thomas [12]). Let 0<*<1, let
f # B2

*_ , and let

M :=sup
t # R

| f (t)|.

Then

|TN(t)|�
M sec (*?�2)

2?
} |sin 2?_t| } \ 1

N+[2_t+1�2]
+

1
N&[2_t+1�2]+

for |2_t|<N& 1
2.

This bound depends on t as well as the band reduction parameter * with
the factor sec(*?�2) being unbounded as * � 1&.

Theorem 3.2 (H. S. Piper, Jr. [9]). Let 0<*<1, let f # B2
*_ , and let

E :=|
�

&�
| f (t)| 2 dt.

Then

|TN(t)|�
1

?3�2 [E tan(*?�2)]1�2(1+- 2)

} |sin 2?_t| \ 1
N+[t+(1�2)]

+
1

N&[t+(1�2)]+
for |t|<N& 1

2.
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Again the bound depends on t and the band reduction parameter * with
the factor tan(*?�2) being unbounded as * � 1&.

Theorem 3.3 (P. L. Butzer, W. Engels, and U. Scheben [3]). Let
_>0, r=1, 2, ..., and F # Cr&1(R) with F(s)=0 for |s|>_. Assume further
that F (r&1) is absolutely continuous, that F (r) is of bounded variation, and
that F (r)(s) is continuous at the points s=\_. Then the truncation error
associated with the _-bandlimited function*

f (t)=|
_

&_
F(s) e2?ist ds

is bounded by

|TN(t)|�
2
?

} \_
?+

r+1

}
Vr

r+1
} |sin 2?_t| }

1
(N&2_|t| )r+1 for |t|<

N
2_

.

Here Vr is the variation of F (r) on [&_, _].

An integration-by-parts argument in [3] shows that the hypotheses of
Theorem 3.3 imply that

| f (t)|�
A

|t| r+1 when t{0, (3.1)

We will use (3.1) as the decay condition that we impose upon f to derive
our uniform bounds. (A bound of the form

} f \ k
2_+ }�

C
|k| r+1, k=\1, \2, } } }

is all that is needed in our proof.)

Theorem 3.4. Let f # B2
_ satisfy a decay condition of the form

|(t)|�
A

|t| r+1 t{0

for some choice of A>0 and r>0, then

|TN(t)|�A } (2_)r+1 }� 2
2r+1

}
1

Nr+1�2 \t # R, N # N, (3.2)

|TN(t)|<A } (2_)r+1 }
2 - 2e

?
}
(?+ln N )

Nr+1 \t # R, N�8. (3.3)
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Proof. Using Cauchy's inequality, (2.2), the decay hypothesis, and
Lemma 2.3 in turn we write

|TN(t)|= } :
|k| >N

f \ k
2_+sinc(2_t&k)}

�\ :
|k|>N } f \ k

2_+ }
2

+
1�2

} \ :
|k|>N

sinc2(2_t&k)+
1�2

�\ :
|k|>N } f \ k

2_+ }+
1�2

�A } (2_)r+1 \2 :
�

k=N+1

1
k2r+2+

1�2

�A } (2_)r+1 \ 2
2r+1

}
1

N2r+1+
1�2

=A } (2_)r+1� 2
2r+1

}
1

Nr+1�2 .

This is (3.2). We next show this error bound can be improved from
O(1�(Nr+(1�2))) to O(ln N�N r+1).

We will use the decay hypothesis and Ho� lder inequality together with
Lemmas 2.3, 2.4. Let 1<q<2 and 2<p<� be chosen so that
1�p+1�q=1. Then

|TN(t)= } :
|k|>N

f \ k
2_+ sinc(2_t&k) }

�\ :
|k|>N } f \ k

2_+ }
p

+
1�p

} \ :
|k|>N

|sinc(2_t&k)|q+
1�q

�A } (2_)r+1 } \2 :
k=N+1

1
k pr+p+

1�p

} \2+
2
?

+
2
?

1
q&1+

1�q

�A } (2_)r+1 } \ 2
pr+ p&1+

1�p

}
1

Nr+( p&1)�p } \2+
2
?

+
2
?

1
q&1+

1�q

=A } (2_)r+1 } \ 2
pr+ p&1+

1�p

}
1

Nr+1�q } \1+
2
?

+
2
?

1
q&1+

1�q

.

Now we set

p=ln N, q=
ln N

ln N&1
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(and assume N>e2=7.389... to ensure that p>2). Then

\ 2
pr+ p&1+

1�p

<- 2,

N1�q=N1&(1�ln N )=
N
e

,

and

\2+
2
?

+
2
?

1
q&1+

1�q

=\2+
2
?

ln N+
1&(1�ln N )

�
2
?

(?+ln N ).

Upon combining these estimates we find

|TN(t)|<A } (2_)r+1 }
2 - 2e

?
}
(?+ln N )

Nr+1 . K

A slightly sharper error bound can obtained when the sampled data has
monotone tails.

Theorem 3.5. Let ..., c&2 , c&1 , c0 , c1 , c2 , ... be a sequence of nonnegative
real numbers such that

:
�

k=&�

|ck | 2<�,

and such that for some positive integer M,

cM�cM+1�cM+2� } } }

c&M�c&M&1�c&M&2� } } } .

Then

f (t) := :
�

k=&�

ck sinc(2_t&k)

defines a function in B2
_ and the corresponding truncation error is bounded by

|TN(t)|= } :
�

|k|>N

ck sinc(2_t&k) }
�(cN+1+c&N&1) } \?

2
+1+ for N�M.
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Proof. The above bound is obtained by using Lemma 2.2 to show that
the partial sums

:
N$

k=N

sinc(2_t&k) :
N$

k=N

sinc(2_t+k)

of the truncation error are uniformly bounded and then applying the
following lemma of Abel. K

Lemma 3.6 (Abel). Let a1�a2� } } } �aN�0 and assume that the
partial sums

Sm := :
m

k=1

bk

of the numbers b1 , ..., bN are uniformly bounded, i.e., |Sm |�A for 1�m�N.
Then

} :
N

k=1

akbk }�a1A.

Example. By Theorem 2.5, the series

f (t)= :
�

k=&�

1
1+k2 sinc(2_t&k),

f (t)= :
�

k=&�

e&|k| sinc(2_t&k),

f (t)= :
�

k=&�

1
|k|+1

sinc(2_t&k)

define functions in B2
_ with the corresponding truncation error being

bounded by

|TN(t)|�
2+r

N 2+2N+2
,

|TN(t)|�(2+?) e&N,

|TN(t)|�
2+?
N+2

.
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A function f is said to be almost bandlimited if the Fourier transform F
is not compactly supported but rather has small tails. Finding a bound for
the error when an almost bandlimited function is approximated by the
sampling expansion is a very practical issue, since the functions encoun-
tered in applications of the sampling theory are not always exactly
bandlimited. An important bound was given by J. L. Brown, Jr. [2 or 13].
We will present his result and use it to estimate the error when the function
is approximated with only finitely many samples.

Theorem 3.7 (J. L. Brown, Jr. [2]). Let the function f : R � C have the
representation

f (t)=|
R

F(s) e2?ist ds,

where F # L1(R), and let _>0 be given. Then the series

f_(t) := lim
N � �

:
N

k=&N

f \ k
2_+ sinc(2_t&k)

converges pointwise on R and

| f (t)& f_(t)|�2 |
|s|>_

|F(s)| ds.

When F # L1(R) is suitably regular, we can pick some _>0 to ensure
that the aliasing error

A_ :=2 |
|s|>_

|F(s)| ds (3.4)

is small. The complete sampling expansion

f_(t) := :
�

k=&�

f \ k
2_+ sinc(2_t&k)

will then provide a good approximation to f (t). But in real world situa-
tions, only finitely many samples are available. For this reason we also
need a bound on the truncation error

TN(t) := :
|k|>N

f \ k
2_+ sinc(2_t&k). (3.5)

In this case, however, the samples [ f (k�2_)] may not have the nice proper-
ties (e.g., the square summability) possessed by samples of a bandlimited
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function. The Riemann�Lebesgue lemma, insures that if F # L1(R), then
f (k�2_) � 0, as k � \�; the rate of this convergence, however, is
unknown.

When only finitely many samples are used to approximate f, it is
reasonable to assume that the remaining samples are small in some collec-
tive sense. We will use Theorem 3.7, (3.4) and (3.5), to write

} f (t)& :
N

k=&N

f \ k
2_+ sinc(2_t&k)}�|TN(t)|+A_

and use arguments analogous to these given above to provide bounds for
(3.5) in three situations.

(i) If ��
k=&� | f (k�2_)| converges, then

|TN(t)|� :
|k|>N } f \ k

2_+ } .
(ii) If ��

k=&� | f (k�2_)| 2 converges, then

|TN(t)|�\ :
|k|>N } f \ k

2_+ }
2

+
1�2

.

(iii) If [ f (k�2_)] is monotone for k>M�2_ and for k<&M�2_,
then

|TN(t)|�\} f \N
2_+ }+ } f \&N

2_ + }+ \?
2

+1+ for N>M.

Example. If

f (t)=e?t2
, F(s)=e&?s2

,

then

|A_ |=2 |
|s|>_

e&?t2 dt<4 |
�

_
e&?_t dt=

4
?_

e&?_2
for _>0,

and (since the tails are monotone)

|TN(t)|�(?+2) e&?N2
for N=1, 2... .

Example. If

f (t)=
1

1+t2 , F(s)=?e&2?|s|,
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then

|A_(t)|=2|
|s|>_

?e&2?|t| dt<4? |
�

_
e&2?t dt=2e&?_ for _>0,

and (since the tails are monotone)

|TN(t)|�
2+?

N 2+1
for N=1, 2, ... . K
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